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Problem Definition
Solution Methods

Partial Differential Equations with Uncertain Coefficients

Examples:

Diffusion equation: −∇ · (a(x, ξ)∇u) = f

Navier-Stokes equations: −∇ · (a (x, ξ)∇~u) + (~u · ∇)~u +∇p = ~f
∇ · ~u = 0

Posed on D ⊂ Rd with suitable boundary conditions

Sources: models of diffusion in media with uncertain permeabilities

multiphase flows

Uncertainty / randomness:
a = a(x, ξ) is a random field: for each fixed x ∈ D, a(x, ξ) is a

random variable depending on m random parameters ξ1, . . . , ξm
In this study: a(x, ξ) = a0(x) +

∑m
r=1 ar (x) ξr

Possible sources:
Karhunen-Loève
expansion

or Piecewise constant
coefficients on D
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Problem Definition
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The Stochastic Galerkin Method

Standard weak diffusion problem: find u ∈ H1
E (D) s.t.

a(u, v) =

∫
D
a∇u · ∇vdx =

∫
D
f v dx ∀ v ∈ H1

0 (D)

Extended (stochastic) weak formulation: find u ∈ H1
E (D)⊗ L2(Ω) s.t.∫

Ω

∫
D
a∇u ·∇v dx dP(Ω)︸ ︷︷ ︸ =

∫
Ω

∫
D
f v dx dP(Ω)︸ ︷︷ ︸ ∀ v ∈ H1

0 (D)⊗ L2(Ω)

∫
Γ

∫
D
a(x, ξ)∇u·∇v dx ρ(ξ) dξ

∫
Γ

∫
D
f v dx ρ(ξ) dξ (Γ = ξ(Ω))

Discretization in physical space: S(h)
E ⊂ H1

E (D), basis {φj}Nj=1

Example: piecewise linear “hat functions”

Discretization in space of random variables: T (p) ⊂ L2(Γ), basis {ψ`}M`=1

Example: m-variate polynomials in ξ of total degree p
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Problem Definition
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Discrete solution:

uhp(x, ξ) =
∑N

j=1

∑M
`=1 uj`φj(x)ψ`(ξ)

Requires solution of large coupled system

Matrix (right): G0 ⊗ A0 +
∑m

r=1 Gr ⊗ Ar

“Stochastic dimension”: M =

(
m + p

p

)

(Ghanem, Spanos, Babuška, Deb, Oden, Matthies, Keese, Karniadakis,
Xue, Schwab, Todor)
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Problem Definition
Solution Methods

The Stochastic Collocation Method

Monte-Carlo (sampling) method: find u ∈ H1
E (D) s.t.∫

D
a(x, ξ(k))∇u ·∇vdx for all v ∈ H1

E0
(D)

for a collection of samples {ξ(k)} ∈ L2(Γ)

Collocation (Xiu, Hesthaven, Babuška, Nobile, Tempone, Webster)

Choose {ξ(k)} in a special way (sparse grids), then construct
construct discrete solution uhp(x, ξ) to interpolate {uh(x, ξ(k))}

Structure of collocation solution:

uhp(x, ξ) :=
∑

ξ(k)∈Θp
uc(x, ξ(k))Lξ(k) (ξ)

Features:
Decouples algebraic system (like MC)
Applies in a straightforward way to nonlinear random terms
Coefficients {uc(x, ξ(k))} obtained from large-scale PDE solve
Expensive when number of points |Θp| is large
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Problem Definition
Solution Methods

Properties of These Methods

For both Galerkin and collocation

Each computes a discrete function uhp

Moments of u estimated using moments of uhp (cheap)

Convergence: ‖E (u)− E (uhp)‖H1(D) ≤ c1h + c2r
p, r < 1

Exponential in polynomial degree

Contrast with Monte Carlo:
Perform NMC (discrete) PDE solves to obtain samples {u(s)

h }
NMC
s=1

Moments from averaging, e.g., Ê (uh) = 1
NMC

∑NMC

s=1 u
(s)
h

Error ∼ 1/
√
NMC

One other thing: “p” has different meaning for Galerkin and collocation

Disadvantage of collocation: For comparable accuracy
# stochastic dof (collocation) ≈ 2p (# stochastic dof (Galerkin))
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Representative Comparison for Diffusion Equation

Representative comparative performance (E., Miller, Phipps, Tuminaro)

p = 6

p = 5

p = 4

p = 3

p = 2

p = 1

m = 5
uniform
density

Error

Using mean-based preconditioner
for Galerkin system
Kruger, Pellisetti, Ghanem
Le Mâıtre, et al., E. & Powell

Question: Can costs of collocation be reduced?
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Reduced Basis Methods

Starting point: Parameter-dependent PDE Lξu = f

In examples given: Lξ = −∇ · (a0 + σ
∑m

r=1

√
λrar (x)ξr )∇

Discretize: Discrete system Lh,ξ(uh) = f

Algebraic system Fξ(uh) = 0 (Aξuh = f) of order N

Complication:

Expensive if many realizations (samples of ξ) are required

Idea (Patera, Boyaval, Bris, Lelièvre, Maday, Nguyen, . . .):

Solve the problem on a reduced space

That is: by some means, choose ξ(1), ξ(2), . . . , ξ(n), n� N

Solve Fξ(i) (u
(i)
h ) = 0, u

(i)
h = uh(·, ξ(i)), i = 1, . . . , n

For other ξ, approximate uh(·, ξ) by ũh(·, ξ) ∈ span{u(1)
h , . . . , u

(n)
h }

Terminology: {u(1)
h , . . . , u

(n)
h } called snapshots

9 / 42 H. C. Elman Reduced Basis Collocation for PDEs



Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
Reduced Basis Methods

Reduced Basis + Sparse Grid Collocation
Iterative Solution of Reduced Problem

Concluding Remarks

Offline Computations
Reduced Problem
Reduced Problem: Costs
Reduced Problem: Capturing Features of Model

Offline Computations

Strategy for generating a basis / choosing snapshots (Patera, et al.):

For ũh(·, ξ) ≈ uh(·, ξ) (equivalently, ũξ ≈ uξ), use an

error indicator η(ũh) ≈ ‖eh‖, eh = uh − ũh

Given: a set of candidate parameters X = {ξ},
an initial choice ξ(1) ∈ X , and u(1) = u(·, ξ(1))

Set Q = u(1)

while maxξ∈X (η(ũh(·, ξ))) > τ

compute ũh(·, ξ), η(ũh(·, ξ)), ∀ ξ ∈ X % use current reduced

let ξ∗ = argmaxξ∈X (η(ũh(·, ξ)) % basis

if η(ũh(·, ξ∗)) > τ then

augment basis with uh(·, ξ∗), update Q with uξ∗

endif

end

Potentially expensive, but viewed as “offline” preprocessing
“Online” simulation done using reduced basis
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For set of candidate parameters X = {ξ}:

Greedy search (Patera, et al.):
Search over large set of parameters {ξ}
May be randomly or systematically chosen

Optimization methods (Bui-thanh, Willcox, Ghattas):
Find ξ that minimizes error estimator
May need derivative information

Not a concern in today’s setting – we will use sparse grids
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Reduced Problem

For linear problems, matrix form:

Coefficient matrix Aξ, nodal coefficients uh, ũh, u(1), . . .u(n)

Q = orthogonal matrix whose columns span space spanned by {u(i)}

Galerkin condition: make residual orthogonal to spanning space

r = f − Aξũξ = f − AξQyξ orthogonal to Q

Result is reduced problem: Galerkin system of order n� N:

[QTAQ]yξ = QT f , ũξ = Qyξ

Goals: Reduced solution should

be available at significantly lower cost

capture features of the model
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How are costs reduced?

Matrix A of order N

Reduced matrix QTAQ of order n� N

Solving reduced problem is cheap for small n

Note: making assumption that Lξ is affinely dependent on ξ

Lξ =
∑k

i=1 φi (ξ)Li

⇒ Aξ =
∑k

i=1 φi (ξ)Ai

⇒ QTAξQ =
∑k

i=1 φi (ξ) [QTAiQ]︸ ︷︷ ︸
part of offline computation

True for example seen so far, KL-expansion

Consequence: constructing reduced matrix for new ξ is cheap

Analogue for nonlinear problems is more complex
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N.B. One other important issue:

Error indicator must be inexpensive to compute

In present study: use residual indicator

ηQ(ξ) ≡ ‖Aξũξ − f‖2

‖f‖2
=
‖AξQyξ − f‖2

‖f‖2

Using affine structure Aξ =
∑k

i=1 φi (ξ)Ai , efficiency derives from

‖AξQyξ − f‖2
2 = yT

ξ

 K∑
i=1

K∑
j=1

φiφj Q
TAT

i AjQ︸ ︷︷ ︸
 yξ

Offline

− 2yT
ξ

K∑
i=1

(
φi Q

TAT
i f︸ ︷︷ ︸
)

+ fT f︸︷︷︸
Offline Offline
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Reduced Problem: Capturing Features of Model

Consider benchmark problems:

Diffusion equation −∇ · (a(x, ξ)∇u) = f in R2

Piecewise constant diffusion coefficient parameterized as a random
variable ξ = [ξ1, · · · , ξND

]T independently and uniformly distributed in
Γ = [0.01, 1]ND

D1 DND· · ·

...

...

...

..

.
..
.

..

.

D11 DÑ1

D1Ñ DÑÑ

(a) Case 1: ND subdomains (b) Case 2: ND = Ñ × Ñ subdomains
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Does reduced basis capture features of model?

To assess this: consider

Full snapshot set, set of snapshots for all possible parameter values:
SΓ := {uh (·, ξ) , ξ ∈ Γ}

Finite snapshot set, for finite Θ ⊂ Γ:
SΘ := {uh (·, ξ) , ξ ∈ Θ}

Question:
How many samples {ξ} / {uh (·, ξ)} are needed to accurately
represent the features of SΓ?

Experiment: to gain insight into this, estimate “rank” of SΓ

Generate a large set Θ of samples of ξ
Generate the finite snapshot set SΘ associated with Θ
Construct the matrix SΘ of coefficient vectors uξ from SΘ

Compute the rank of SΘ

Results follow. Used 3000 samples
Experiment was repeated ten times with similar results
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Estimated ranks of SΓ for two classes of benchmark problems

Case 1

PPPPPPPPGrid
ND 2 3 4 5 6 7 8 9 10

332 = 1089 3 12 18 30 40 53 55 76 84
652 = 4225 3 12 18 30 40 48 55 70 87

1292 = 16641 3 12 18 28 39 48 55 72 81

55
55
55

Case 2

PPPPPPPPGrid
ND 4 9 16 25 36 49 64

332 = 1089 27 121 193 257 321 385 449
652 = 4225 28 148 290 465 621 769 897

1292 = 16641 28 153 311 497 746 1016 1298

121
148
153

Trends:
Rank is dramatically smaller than problem dimension N
Rank is independent of problem dimension (∼ (mesh size)−2)
In most cases, cost of treating reduced problem of given rank is low
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Combine Reduced Basis with Sparse Grid Collocation

Recall collocation solution

uhp(x , ξ(k)) =
∑

ξ(k)∈Θq
uc(x , ξ(k))Lξ(k) (ξ) (1)

Goal: Reduce cost of collocation via
1. Use sparse grid collocation points as candidate set X
2. Use reduced solution as coefficient uc(·, ξ(k)) whenever possible

for each sparse grid level p Algorithm
for each point ξ(k) at level p

compute reduced solution uR(·, ξ(k))

if η(uR(·, ξ(k))) ≤ τ , then

use uR(·, ξ(k)) as coefficient uc(·, ξ(k)) in (1)
else

compute snapshot uh(·, ξ(k)), use it as uc(·, ξ(k)) in (1)

augment reduced basis with uh(·, ξ(k)), update Q with uξ(k)

endif
end

end
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Number of Full System Solves, Diffusion Equation

Does this work? Look at diffusion problem
Various sparse grid levels p (q = p + M)

Case 1

Case 1, 5× 1 subdomains, 65× 65 grid, rank=30

q 6 7 8 9 10 11 12 13 16
PPPPPPPtol

|Θq|
11 61 241 801 2433 7K 19K 52K 870K

10−3 10 9 0 0 0 0 0 0 0
10−4 10 11 1 0 0 0 0 0 0

10−5 10 13 0 0 0 0 0 0 0

Case 1, 9× 1 subdomains, 65× 65 grid, rank=70, tol = 10−4

q 10 11 12 13 14 15 16 17
|Θp| 19 181 1177 6001 26017 100897 361249 1218049

Nfull solve 18 34 2 1 1 0 0 0
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Number of Full System Solves, Diffusion Equation
Case 2

Case 2, 2× 2 subdomains, 65× 65 grid, rank=28

q 5 6 7 8 9 10 11 12 15
PPPPPPPtol

|Θq|
9 41 137 401 1105 2.9K 7.5K 18.9K 272K

10−3 7 11 3 0 0 0 0 0 0
10−4 7 12 3 0 0 0 0 0 0
10−5 7 13 2 3 0 0 0 0 0

Case 2, 4× 4 subdomains, 65× 65 grid, rank=290, tol = 10−4

q 17 18 19 20 21
|Θq| 33 545 6049 51137 353729

Nfull solve 32 168 27 3 4
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Refined Assessment of Accuracy

Examine error (vs. reference solution) in estimates of

Expected values:

Full collocation εh ≡
∥∥∥Ẽ (uhscq

)
− Ẽ

(
uhscr

)∥∥∥
0

/∥∥∥Ẽ (uhscr

)∥∥∥
0

Reduced collocation εR ≡
∥∥∥Ẽ (urscq

)
− Ẽ

(
uhscr

)∥∥∥
0

/∥∥∥Ẽ (uhscr

)∥∥∥
0

Variances:

Full collocation ζh ≡
∥∥∥Ṽ (uhscq

)
− Ṽ

(
uhscr

)∥∥∥
0

/∥∥∥Ṽ (uhscr

)∥∥∥
0

Reduced collocation ζR ≡
∥∥∥Ṽ (urscq

)
− Ṽ

(
uhscr

)∥∥∥
0

/∥∥∥Ṽ (uhscr

)∥∥∥
0
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Errors in Expected Value
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Case 1: 5 × 1 vertical subdomains Case 2: 2 × 2 square subdomains

Comments:

Results for reduced/full systems are identical

Results also compare favorably with Monte Carlo
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Errors in Variance
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Case 1: 5 × 1 vertical subdomains Case 2: 2 × 2 square subdomains

Comments:

Trends for reduced/full systems are similar

Noteworthy because error indicator is not effective as a fem error estimator
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Diffusion problem with truncated Karhunen-Loève expansion

Diffusion coefficient a0 + σ
∑m

r=1

√
λrar (x)ξr

From covariance function c(x, y) = σ exp
(
− |x1−y1|

c − |x2−y2|
c

)
Smaller correlation length c ∼ more terms m
Examine c = 4, m = 4 and c = 2.5, m = 8.
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Comments on Costs

One difference from “pure” reduced basis method:
“Offline” and “Online” steps are not as clearly separated

Statement of costs of collocation:

Full: (# of collocation points) × (cost of full system solve)
Reduced: (# of collocation points where error tolerance is met)

× (cost of reduced system solve) +
(# of collocation points where error tolerance is not met)
× (cost of augmenting reduced basis and updating offline

quantities).

For Reduced Collocation:
Red costs depend on N, large-scale parameter
Favors reduced if many collocation points use reduced model
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Application to the Navier-Stokes Equations

−ν (·, ξ)∇2~u (·, ξ) + ~u (·, ξ) · ∇~u (·, ξ) +∇p (·, ξ) = 0 in D × Γ

∇ · ~u (·, ξ) = 0 in D × Γ

~u (·, ξ) = ~g (·, ξ) on ∂D × Γ

Possible sources of uncertainty:

viscosity ν(x , ξ) (in multiphase flow)

boundary conditions g(x , ξ)

Picard iteration (in weak form), for any realization of parameter ξ:

(ν∇δ~u,∇~v ) + (~u ` · ∇δ~u, ~v )− (δp,∇~v )

= −(ν∇~u `,∇~v )− (~u ` · ∇~u `, ~v ) + (p`,∇~v ) ∀~v ∈ X h
0

(∇ · δ~u, q) = −(∇ · ~u `, q) ∀q ∈ Mh

~u `+1 = ~u ` + δ~u, p`+1 = p` + δp.
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Result: Matrix equation(
Aξ + Nu`, ξ BT

B 0

)(
δu
δp

)
=

(
f ru`,p`, ξ

gr
u`,p`, ξ

)
Using div-stable Q2-P−1 element

Reduced Problem: Given (matrix) representations Qu, Qp

of velocity/pressure bases:(
QT

u (Aξ + Nu`, ξ)Qu QT
u BTQp

QT
p BQu 0

)(
δw
δy

)
=

(
QT

u f ru`,p`, ξ

QT
p gr

u`,p`, ξ

)
δu ≈ Qu δw, δp ≈ Qp δy
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Additional Requirements

Stability requirements As above, generate snapshots
 ~u

(
·, ξ(1)

)
p
(
·, ξ(1)

)  , . . . ,

 ~u
(
·, ξ(n)

)
p
(
·, ξ(n)

) 
Complication: reduced solution does not automatically satisfy inf-sup

condition

Fix: (Quarteroni & Rozza): Supplement velocity basis with supremizers

~r
(
·, ξ(k)

)
that satisfy

~r
(
·, ξ(k)

)
= arg sup

~v∈X h
0

(
p
(
·, ξ(k)

)
,∇ · ~v

)
|~v |1

.

Result: Dim(reduced velocity space) = 2×dim(reduced pressure space)
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Treatment of nonlinearities

Recall: affine structure of linear operators Aξ =
∑k

i=1 φi (ξ)Ai

→ offline construction QTAξQ =
∑k

i=1 φi (ξ) [QTAiQ]

At step ` of reduced Picard iteration, reduced velocity iterate is
u` = Quw`

Convection operator has the form

~u` · ∇ =
n∑

i=1

w `
i (~q(i) · ∇)

Equivalently, convection matrix is N =
∑n

i=1 Niyi

⇒ QT
u NQu =

n∑
i=1

[QT
u NiQu]︸ ︷︷ ︸ w `

i

Offline computation
cost O(n2N)× n
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Navier-Stokes with Uncertain Viscosity

−ν (·, ξ)∇2~u (·, ξ) + ~u (·, ξ) · ∇~u (·, ξ) +∇p (·, ξ) = 0 in D × Γ

∇ · ~u (·, ξ) = 0 in D × Γ

~u (·, ξ) = ~g (·, ξ) on ∂D × Γ

D1

D2

D3

u1 = 1, u2 = 0

u1 =u2 = 0

u1 = 0

u2 = 0

u1 = 0

u2 = 0

Driven cavity problem with

variable random viscosity ν = [ν1, ν2, ν3]T

piecewise constant on subdomains
independently and uniformly distributed

in [0.01, 1]3

31 / 42 H. C. Elman Reduced Basis Collocation for PDEs



Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
Reduced Basis Methods

Reduced Basis + Sparse Grid Collocation
Iterative Solution of Reduced Problem

Concluding Remarks

Introduction
Performance for Diffusion Equation
Application to the Navier-Stokes Equations

Number of full system solves
q 3 4 5 6 7 8 9

```````````tol Grids
|Θq|

1 7 25 69 177 441 1073 Total

10−4 33× 33 1 6 17 23 26 26 25 124
10−4 65× 65 1 6 16 20 21 21 18 103
10−5 33× 33 1 6 18 29 40 44 41 179
10−5 65× 65 1 6 18 27 32 40 32 156

Inf-sup constants γ2
R for reduced problem (γ2

h = .2137)

Nu 2 4 20 50 100 200

γ2
R 0.2431 0.2430 0.2374 0.2359 0.2327 0.2292
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Assessment of errors
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Iterative Solution of Reduced Problem

For methodology to be effective: Reduced solution must be cheap

Reduced linear problem and solution:

[QTAξQ]yξ = QT f, ũξ = Qyξ
Dense system of order k � N
Cost of solution: O(k3)

Full problem:
Aξuξ = f
Sparse discrete PDE of order N
Cost of solution by multigrid: O(N)

A concern not addressed yet:
k � N but k3 6� N
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Reduced problem: [QTAξQ]yξ = QT f

Solve by iterative method (e.g., conjugate gradient)

Seek preconditioner P ≈ QTAξQ

Reformulate reduced problem as a saddle-point problem:[
A−1
ξ Q

QT 0

] [
v
yξ

]
=

[
0

QT f

]
Reduced matrix = Schur complement operator S

Approximate Schur complement:

P̂S := (QTQ)(QTA−1
ξ Q)−1(QTQ) = (QTA−1

ξ Q)−1

Approximate A−1
ξ using multigrid: P−1

Aξ
−→ PS = (QTP−1

Aξ
Q)−1

For preconditioning: require action of P−1
S = QTP−1

Aξ
Q
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Implementation

For parameter ξ:

Construct reduced matrix of order k � N

QTAξQ =
m∑
i=1

φi (ξ)[QTAiQ]

Explicitly construct preconditioning operator P−1
S = QTP−1

Aξ
Q

N.B. not practical, “online,” costs O(N)

Alternative: use a single ξ0, PAξ0
for all Aξ

Done once: Apply MG to each column of Q −→ P−1
Aξ0

Q

Premultiply result by QT

Produces (dense) preconditioning operator of order n

Variant: use a finite fixed set {ξj} to construct {P−1
S,j }

For Aξ, use PS,j for ξj closest to ξ

Cost per step of matrix operations O(k2), k � N
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Experimental Performance

For all experiments:

PDE posed on a square domain

Spatial discretization: Bilinear fem

Error indicator: Matrix residual norm

‖f − Aξũ‖2

‖f‖2
≤ τ, τ = 10−8

Iteration stopping test:

‖QT f − QTAξQyi‖2

‖QT f‖2
≤ τ

10
,

MG preconditioner: PyAMG (Bell, Olson, Schroder)

Test: Solve 100 randomly generated systems
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One benchmark problem:

Diffusion equation −∇ · (a(x, ξ)∇u) = f on [0, 1]× [0, 1]

a(x , ξ) = µ(x) +
∑m

i=1

√
λi ai (x)ξi

a derived from covariance function

C (x , y) = σ2exp

(
−|x1 − y1|

c
− |x2 − y2|

c

)
{ξr} uniform on [−1, 1], σ = .5, µ ≡ 1
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(P)CG terations
m =# parameters
k = size of reduced basis

N
c 3 1.5 0.75
m 7 17 65

332

k 97 254 607
None 60.1 90.7 101.7
Single 10.0 9.3 9.5
Online 10.0 9.0 9.0

652

k 100 269 699
None 68.8 129.3 175.5
Single 10.0 10.0 8.5
Online 10.0 9.8 8.0

1292

k 102 269 729
None 70.1 149.5 252.5
Single 11.2 14.6 12.9
Online 11.0 14.8 13.0

2572

k 102 275 740
None 70.4 154.0 293.6
Single 11.0 13.7 15.4
Online 11.0 13.0 15.0
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CPU times
m =# parameters
k = size of reduced

basis

N
c 3 1.5 0.75
m 7 17 65

332

k 97 254 607
Full AMG 0.0202 0.0205 0.0214

Reduced Direct 0.0003 0.0016 0.0181
Reduced Iterative 0.0004 0.0008 0.0036

652

k 100 269 699
Full AMG 0.1768 0.1961 0.1947

Reduced Direct 0.0003 0.0021 0.0262
Reduced Iterative 0.0004 0.0010 0.0044

1292

k 102 269 729
Full AMG 0.1195 0.1286 0.1347

Reduced Direct 0.0003 0.0020 0.0287
Reduced Iterative 0.0005 0.0013 0.0070

2572

k 102 275 740
Full AMG 0.3163 0.2988 0.3030

Reduced Direct 0.0004 0.0024 0.0302
Reduced Iterative 0.0005 0.0012 0.0088
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Reduced basis methods offer significant promise for reducing the
cost of collocation methods for uncertainty quantification

Addresses issue of cost associated with collocation

Amenable to mildly nonlinear problems

General nonlinear problems: active area of research
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